Re-Cloning the N27 Dopamine Cell Line to Improve a Cell Culture Model of Parkinson's Disease

نویسندگان

  • Lu Gao
  • Wenbo Zhou
  • Breanna Symmes
  • Curt R. Freed
چکیده

Parkinson's disease is characterized by the death of dopaminergic neurons in the substantia nigra. To understand the molecular mechanisms of the disease, an in vitro model is important. In the 1990s, we used the SV40 large T antigen to immortalize dopaminergic neurons derived from Embryonic Day 14 rat mesencephalon. We selected a clone for its high expression of dopaminergic neuron markers such as tyrosine hydroxylase (TH), and we named it 1RB3AN27 (N27). Because the original N27 cell line has been passaged many times, the line has become a mixture of cell types with highly variable expression of TH. In the current study, we have performed multiple rounds of clonal cultures and have identified a dopaminergic cell clone expressing high levels of TH and the dopamine transporter (DAT). We have named this new clone N27-A. Nearly 100% of N27-A cells express TH, DAT and Tuj1. Western blots have confirmed that N27-A cells have three to four times the levels of TH and DAT compared to the previous mixed population in N27. Further analysis has shown that the new clone expresses the dopamine neuron transcription factors Nurr1, En1, FoxA2 and Pitx3. The N27-A cells express the vesicular monoamine transporter (VMAT2), but do not express dopamine-beta-hydroxylase (DβH), the enzyme responsible for converting dopamine to norepinephrine. Functional analysis has shown that N27-A cells are more sensitive than N27 cells to neurotoxins taken up by the dopamine transporter such as 6-hydroxydopamine and 1-methyl-4-phenylpyridine (MPP+). The DAT inhibitor nomifensine can block MPP+ induced toxicity. The non-selective toxic effects of hydrogen peroxide were similar in both cell lines. The N27-A cells show dopamine release under basal and depolarization conditions. We conclude that the new N27-A clone of the immortalized rat dopaminergic cell line N27 should provide an improved in vitro model for Parkinson's disease research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement in Signs of Parkinson's Disease in Rats Following Transplantation of Embryonic Stem Cells

Purpose: Parkinson's disease is a degenerative disease produced by the death of dopaminergic neurons, and the response to current treatments is varied. It is important to develop a model for the evaluation of ES cells as an alternative model for treatment. Materials and Methods: The model for PD was developed in rats. First, ES cells were transplanted into experimental models in three groups: ...

متن کامل

Expression of synaptophysin protein in different dopaminergic cell lines.

Synaptophysin is a specific presynaptic marker for neurons. Loss of synaptophysin occurs in Parkinson's disease, dementia with Lewy bodies and other neurodegenerative diseases. In vitro studies on synaptophysin are important to understand both the function of the protein itself and its implication in the pathogenesis of neurological diseases. In this study, we determined synaptophysin protein e...

متن کامل

Neuroprotection and restoration of the nigrostriatal dopaminergic system in 6-OHDA lesioned rat model of Parkinson's disease: Role of GDNF and TGF expressing Zuckerkandl's organ

Zuckerkandl’s organ (ZK) is an extra adrenal para-ganglion and has the ability to express glial cell line derived neurotrophic factor (GDNF) and transforming growth factor (TGF). It is also a source of dopamine and norepinephrine. In the present study, the neuroprotective and restorative potential of ZK was studied by transplanting it into the striatum of adult rats either before or after the i...

متن کامل

Neuroprotection and restoration of the nigrostriatal dopaminergic system in 6-OHDA lesioned rat model of Parkinson's disease: Role of GDNF and TGF expressing Zuckerkandl's organ

Zuckerkandl’s organ (ZK) is an extra adrenal para-ganglion and has the ability to express glial cell line derived neurotrophic factor (GDNF) and transforming growth factor (TGF). It is also a source of dopamine and norepinephrine. In the present study, the neuroprotective and restorative potential of ZK was studied by transplanting it into the striatum of adult rats either before or after the i...

متن کامل

EGCG Protects against 6-OHDA-Induced Neurotoxicity in a Cell Culture Model.

Background. Parkinson's disease (PD) is a progressive neurodegenerative disease that causes severe brain dopamine depletion. Disruption of iron metabolism may be involved in the PD progression. Objective. To test the protective effect of (-)-epigallocatechin-3-gallate (EGCG) against 6-hydroxydopamine- (6-OHDA-) induced neurotoxicity by regulating iron metabolism in N27 cells. Methods. Protectio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016